

Hilti HIT-HY 200 mortar with rebar (as anchor)

Approved automatic cleaning while drilling

Hilti SAFEset technology with hollow drill bit

Tensile zone

Seismic ETA-C1

edge distance and spacing

Variable embedm ent depth

European Technical Approval

CE conformi ty

PROFIS Anchor design software

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European technical approval ^{a)}	DIBt, Berlin	ETA-11/0493 / 2013-06-20 (Hilti HIT-HY 200-A) ETA-12/0084 / 2013-06-20 (Hilti HIT-HY 200-R)

03 / 2015 483

a) All data given in this section according ETA-11/0493 and ETA-12/0084, issue 2013-06-20.

Basic loading data (for a single anchor)

All data in this section applies to

For details see Simplified design method

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- Steel failure
- Base material thickness, as specified in the table
- One typical embedment depth, as specified in the table
- One anchor material, as specified in the tables
- Concrete C 20/25, f_{ck,cube} = 25 N/mm²
- Temperate range I
 - (min. base material temperature: +24°C, max. long term/short term base material temperature: +24°C/40°C)
- Installation temperature range +5°C to +40°C

Embedment depth a) and base material thickness for the basic loading data.

Mean ultimate resistance, characteristic resistance, design resistance, recommended loads.

	Data ac	Data according ETA-11/0493 and ETA-12/0084, issue 2013-06-20							
Anchor size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Typical embedment depth [mm]	80	90	110	125	145	170	210	270	300
Base material thickness [mm]	110	120	145	165	185	220	275	340	380

a) The allowed range of embedment depth is shown in the setting details. The corresponding load values can be calculated according to the simplified design method.

Mean ultimate resistance: concrete C 20/25 - f_{ck,cube} = 25 N/mm², anchor rebar BSt 500S

			Data	Data according ETA-11/0493 and ETA-12/0084, issue 2013-06-2							6-20
Anchor size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Non cracked c	oncrete										
Tensile N _{Ru,m}	BSt 500 S	[kN]	29,4	45,0	65,1	87,6	116,1	148,6	204,0	297,4	348,4
Shear V _{Ru,m}	BSt 500 S	[kN]	14,7	23,1	32,6	44,1	57,8	90,3	141,8	177,5	232,1
Cracked concr	ete										
Tensile N _{Ru,m}	BSt 500 S	[kN]	-	18,8	38,5	51,1	67,7	99,3	145,4	212,0	248,3
Shear V _{Ru,m}	BSt 500 S	[kN]	- 2	23,1	32,6	44,1	57,8	90,3	141,8	177,5	232,1

Characteristic resistance: concrete C 20/25 - f_{ck,cube} = 25 N/mm², anchor rebar BSt 500 S

			Data according ETA-11/0493 and ETA-12/0084, issue 2013-06-20							6-20	
Anchor size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Non cracked	concrete										
Tensile N _{Rk}	BSt 500 S	[kN]	24,1	33,9	49,8	66,0	87,5	111,9	153,7	224,0	262,4
Shear V _{Rk}	BSt 500 S	[kN]	14,0	22,0	31,0	42,0	55,0	86,0	135,0	169,0	221,0
Cracked cond	rete										
Tensile N _{Rk}	BSt 500 S	[kN]	1-	14,1	29,0	38,5	51,0	74,8	109,6	159,7	187,1
Shear V _{Rk}	BSt 500 S	[kN]	15	22,0	31,0	42,0	55,0	86,0	135,0	169,0	221,0

Design resistance: concrete C 20/25 - f_{ck,cube} = 25 N/mm², anchor rebar BSt 500 S

			Data	Data according ETA-11/0493 and ETA-12/0084, issue 2013-06-2							
Anchor size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Non cracked	concrete										
Tensile N _{Rd}	BSt 500 S	[kN]	16,1	22,6	33,2	44,0	58,3	74,6	102,5	149,4	174,9
Shear V _{Rd}	BSt 500 S	[kN]	9,3	14,7	20,7	28,0	36,7	57,3	90,0	112,7	147,3
Cracked conc	rete										
Tensile N _{Rd}	BSt 500 S	[kN]		9,4	19,4	25,7	34,0	49,8	73,0	106,5	124,7
Shear V _{Rd}	BSt 500 S	[kN]		14,7	20,7	28,0	36,7	57,3	90,0	112,7	147,3

Recommended loads a): concrete C 20/25 - f_{ck,cube} = 25 N/mm², anchor rebar BSt 500 S

			Data according ETA-11/0493 and ETA-12/0084, issue 2013-06-20							6-20	
Anchor size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Non cracked	concrete										
Tensile N _{rec}	BSt 500 S	[kN]	11,5	16,2	23,7	31,4	41,6	53,3	73,2	106,7	125,0
Shear V _{rec}	BSt 500 S	[kN]	6,7	10,5	14,8	20,0	26,2	41,0	64,3	80,5	105,2
Cracked conc	rete										
Tensile N _{rec}	BSt 500 S	[kN]	1-	6,7	13,8	18,3	24,3	35,6	52,2	76,1	89,1
Shear V _{rec}	BSt 500 S	[kN]		10,5	14,8	20,0	26,2	41,0	64,3	80,5	105,2

a) With overall partial safety factor for action $\gamma = 1,4$. The partial safety factors for action depend on the type of loading and shall be taken from national regulations.

Service temperature range

Hilti HIT-HY 200 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 °C to +40 °C	+24 °C	+40 °C
Temperature range II	-40 °C to +80 °C	+50 °C	+80 °C
Temperature range III	-40 °C to +120 °C	+72 °C	+120 °C

Max short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Materials

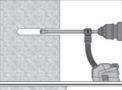
Mechanical properties of rebar BSt 500S

			Data	a accord	ling ETA	-11/0493	3 and ET	A-12/00	84, issue	e 2013-0	6-20
Anchor size	e		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Nominal tensile strength f _{uk}	BSt 500 S	[N/mm²]	550	550	550	550	550	550	550	550	550
Yield strength f _{yk}	BSt 500 S	[N/mm²]	500	500	500	500	500	500	500	500	500
Stressed cross- section A _s	BSt 500 S	[mm²]	50,3	78,5	113,1	153,9	201,1	314,2	490,9	615,8	804,2
Moment of resistance W	BSt 500 S	[mm³]	50,3	98,2	169,6	269,4	402,1	785,4	1534	2155	3217

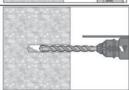
Material quality

Part	Material
rebar BSt 500 S	Geometry and mechanical properties according to DIN 488-2:1986 or E DIN 488-2:2006

03 / 2015 485


Setting

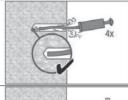
Installation equipment


Anchor size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	
Rotary hammer	TE 2 – TE 16					TE 40 – TE 70				
Other tools	compressed air gun or blow out pump, set of cleaning brushes, disp						penser			

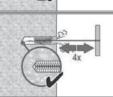
Setting instruction

Bore hole drilling

Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment. This drilling method properly cleans the borehole and removes dust while drilling. After drilling is complete, proceed to the "injection preparation" step in the instructions for use.

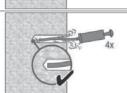


Drill Hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.


Bore hole cleaning Just before setting an anchor, the bore hole must be free of dust and debris.

a) Manual Cleaning (MC) non-cracked concrete only

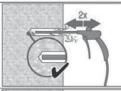
for bore hole diameters do ≤ 20mm and bore hole depth ho ≤ 10d



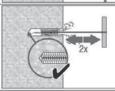
The Hilti manual pump may be used for blowing out bore holes up to diameters $d_0 \le 20$ mm and embedment depths up to $h_{ef} \le 10d$. Blow out at least 4 times from the back of the bore hole until return air stream is free of noticeable dust

Brush 4 times with the specified brush size by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the bore hole -- if not the brush is too small and must be replaced with the proper brush diameter.



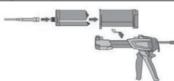
Blow out again with manual pump at least 4 times until return air stream is free of noticeable dust.



b) Compressed air cleaning (CAC)

for all bore hole diameters do and all bore hole depth ho

Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust. Bore hole diameter ≥ 32 mm the compressor must supply a minimum air flow of 140 m³/hour.

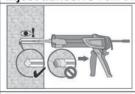

Brush 2 times with the specified brush size by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the bore hole -- if not the brush is too small and must be replaced with the proper brush diameter.

Blow again with compressed air 2 times until return air stream is free of noticeable dust.

Injection preparation

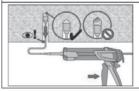
Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle. Observe the instruction for use of the dispenser. Check foil pack holder for proper function. Do not use damaged foil packs / holders. Swing foil pack holder with foil pack into HIT-dispenser.



Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded.

Discard quantities are:

- 2 strokes for 330 ml foil pack,
- 3 strokes for 500 ml foil pack,
- 4 strokes for 500 ml foil pack ≤ 5°C


Inject adhesive from the back of the borehole without forming air voids

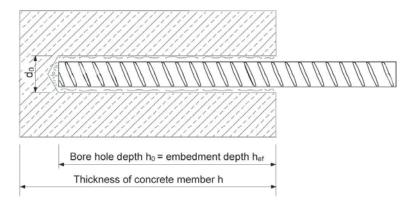
Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length.

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

Overhead installation and/or installation with embedment depth hef > 250mm. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug. Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the bore hole by the adhesive pressure.

etting the element	Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth untill working time twork has elapsed.
	For overhead installation use piston plugs and fix embedded parts with e.g wedges
	Loading the anchor: After required curing time t _{cure} the anchor can be loaded. The applied installation torque shall not exceed T _{max} .

For detailed information on installation see instruction for use given with the package of the product.



Working time, curing time

Temperature	Hilti HIT-H	Y 200-R
of the base material	Working time in which anchor can be inserted and adjusted t_{work}	Curing time before anchor can be loaded t _{cure}
-10 °C to -5 °C	3 hour	20 hour
-4 °C to 0 °C	2 hour	8 hour
1 °C to 5 °C	1 hour	4 hour
6 °C to 10 °C	40 min	2,5 hour
11 °C to 20 °C	15 min	1,5 hour
21 °C to 30 °C	9 min	1 hour
31 °C to 40 °C	6 min	1 hour

Temperature	Hilti HIT-F	IY 200-A
of the base material	Working time in which anchor can be inserted and adjusted twork	Curing time before anchor can be loaded t _{cure}
-10 °C to -5 °C	1,5 hour	7 hour
-4 °C to 0 °C	50 min	4 hour
1 °C to 5 °C	25 min	2 hour
6 °C to 10 °C	15 min	75 min
11 °C to 20 °C	7 min	45 min
21 °C to 30 °C	4 min	30 min
31 °C to 40 °C	3 min	30 min

Setting details

03 / 2015 48

Setting details

			Data	accord	ling ETA	-11/0493	3 and ET	A-12/00	84, issu	e 2013-0	6-20
Anchor size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Nominal diameter of drill bit	d ₀	[mm]	12 (10) ^{a)}	14 (12) ^{a)}	16 (14) ^{a)}	18	20	25	32	35	40
Effective anchorage	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
and drill hole depth range b)	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum base material thickness	h _{min}	[mm]	h	_{ef} + 30 m	m			h _{ef} +	2 d ₀		
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160
Critical spacing for splitting failure	S _{cr,sp}						2 c _{cr,sp}				
			1,0 · h _{ef}	f	or h / h _{ef}	≥ 2,0		2,0			
Critical edge distance for splitting failure c)	C _{cr,sp}	[mm]	4,6 h _{ef} -	1,8 h f	or 2,0 > I	n / h _{ef} > 1		1,3		`	
			2,26 h _{ef}	f	or h / h _{ef}	≤ 1,3		-	1,0·h _{ef}	2,26·h _{ef}	c _{cr,sp}
Critical spacing for concrete cone failure	s _{cr,N}						2 c _{cr,N}				
Critical edge distance for concrete cone failure ^{d)}	C _{cr,N}						1,5 h _{ef}				
			o Y)				

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

- a) both given values for drill bit diameter can be used
- b) $h_{ef,min} \le h_{ef} \le h_{ef,max}$ (h_{ef} : embedment depth)
- c) h: base material thickness (h ≥ h_{min})
- d) The critical edge distance for concrete cone failure depends on the embedment depth h_{ef} and the design bond resistance. The simplified formula given in this table is on the save side.

4 0

Simplified design method

Simplified version of the design method according ETAG 001, TR 029. Design resistance according data given in ETA-11/0493 issued 2013-06-20 for HIT-HY 200-A and ETA-12/0084 issued 2013-06-20 for HIT-HY 200-R. Both mortars possess identical technical load performance.

- Influence of concrete strength
- Influence of edge distance
- Influence of spacing
- Valid for a group of two anchors. (The method may also be applied for anchor groups with more than two anchors or more than one edge distance. The influencing factors must then be considered for each edge distance and spacing. The simplified calculated design loads take a conservative approach: They will be lower than the exact values according to ETAG 001, TR 029. For an optimized design, anchor calculation can be performed using PROFIS anchor design software.

The design method is based on the following simplification:

No different loads are acting on individual anchors (no eccentricity)

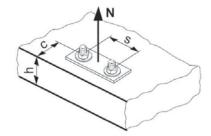
The values are valid for one anchor.

For more complex fastening applications please use the anchor design software PROFIS Anchor.

Tension loading

The design tensile resistance is the lower value of

Steel resistance: N_{Rd,s}


- Combined pull-out and concrete cone resistance:

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{B,p} \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,p} \cdot f_{re,N}$$

- Concrete cone resistance: $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$
- . Concrete splitting resistance (only non-cracked concrete):

$$N_{Rd,sp} = N_{Rd,c}^{0} \cdot f_{B} \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,N} \cdot$$

 $f_{re,N}$

Basic design tensile resistance

Design steel resistance N_{Rd,s}

			Data according ETA-11/0493 and ETA-12/0084, issue 2013-06-20							6-20	
Ancho	or size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	
$N_{\text{Rd,s}}$	BSt 500 S	[kN]	20,0	30,7	44,3	60,7	79,3	123,6	192,9	242,1	315,7

Design combined pull-out and concrete cone resistance

 $N_{\text{Rd},p} = N^0_{\text{Rd},p} \cdot f_{\text{B},p} \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,p} \cdot f_{re,N}$

			Data	a accord	ing ETA	-11/0493	3 and ET	A-12/00	84, issue	e 2013-0	6-20
Ancho	or size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Typical embedment depth hef,typ [mm]			80	90	110	125	145	170	210	270	300
Non cr	acked concrete										
N ⁰ _{Rd,p}	Temperature range I	[kN]	16,1	22,6	33,2	44,0	58,3	85,5	131,9	190,0	241,3
N ⁰ _{Rd,p}	Temperature range II	[kN]	13,4	18,8	27,6	36,7	48,6	71,2	110,0	158,3	201,1
N ⁰ _{Rd,p}	Temperature range III	[kN]	11,4	16,0	23,5	31,2	41,3	60,5	93,5	134,6	170,9
Cracke	ed concrete										
N ⁰ _{Rd,p}	Temperature range I	[kN]	-	9,4	19,4	25,7	34,0	49,8	77,0	110,8	140,7
N ⁰ _{Rd,p}	Temperature range II	[kN]		7,5	15,2	20,2	26,7	39,2	60,5	87,1	110,6
N ⁰ _{Rd,p}	Temperature range III	[kN]	-	6,6	13,8	18,3	24,3	35,6	55,0	79,2	100,5

Design concrete cone resistance $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$ Design splitting resistance ^{a)} $N_{Rd,sp} = N^0_{Rd,c} \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,N} \cdot f_{re,N}$

			Data	Data according ETA-11/0493 and ETA-12/0084, issue 2013-06-20								
Ancho	or size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	
N ⁰ _{Rd,c}	Non cracked concrete	[kN]	24,1	28,7	38,8	47,1	58,8	74,6	102,5	149,4	174,9	
N ⁰ _{Rd,c}	Cracked concrete	[kN]	=	20,5	27,7	33,5	41,9	53,2	73,0	106,5	124,7	

a) Splitting resistance must only be considered for non-cracked concrete

Influencing factors

Influence of concrete strength on combined pull-out and concrete cone resistance

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_{B,p} = (f_{ck,cube}/25N/mm^2)^{0,1}$				1			

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of embedment depth on combined pull-out and concrete cone resistance

$$f_{h,p} = h_{ef}/h_{ef,typ}$$

Influence of concrete strength on concrete cone resistance

Concrete strength designation (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2}$ a)	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

4 2

Influence of edge distance a)

c/c _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
c/c _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,0	0,7	0,0	0,9	
$f_{1,N} = 0.7 + 0.3 \cdot c/c_{cr,N}$	0.73	0.76	0.79	0,82	0,85	0.88	0,91	0.94	0,97	1
$f_{1,sp} = 0.7 + 0.3 \cdot c/c_{cr,sp}$	0,73	0,76	0,75	0,02	0,00	0,00	0,91	0,34	0,97	_ '
$f_{2,N} = 0.5 \cdot (1 + c/c_{cr,N})$	0.55	0.60	0,65	0,70	0,75	0,80	0,85	0.90	0,95	1
$f_{2,sp} = 0,5 \cdot (1 + c/c_{cr,sp})$	0,55	0,00	0,00	0,70	0,75	0,00	0,00	0,30	0,95	

a) The the edge distance shall not be smaller than the minimum edge distance c_{min} given in the table with the setting details. These influencing factors must be considered for every edge distance smaller than the critical edge distance.

Influence of anchor spacing a)

s/s _{cr,N}	0,1	0,2	0.3	0.4	0.5	0.6	0,7	0,8	0,9	1
s/s _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,0	0,9	1
$f_{3,N} = 0,5\cdot(1 + s/s_{cr,N})$	0.55	0.60	0,65	0,70	0,75	0,80	0,85	0,90	0.95	1
$f_{3,sp} = 0.5 \cdot (1 + s/s_{cr,sp})$	0,55	0,00	0,03	0,70	0,75	0,00	0,00	0,90	0,95	Α.

a) The anchor spacing shall not be smaller than the minimum anchor spacing s_{min} given in the table with the setting details. This influencing factor must be considered for every anchor spacing.

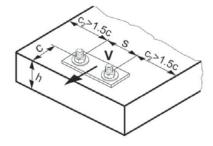
Influence of embedment depth on concrete cone resistance

$$f_{h,N} = (h_{ef}/h_{ef,typ})^{1,5}$$

Influence of reinforcement

h _{ef} [mm]	60	70	80	90	≥ 100
$f_{re,N} = 0.5 + h_{ef}/200 \text{mm} \le 1$	0,8 ^{a)}	0,85 ^{a)}	0,9 ^{a)}	0,95 ^{a)}	1

a) This factor applies only for dense reinforcement. If in the area of anchorage there is reinforcement with a spacing ≥ 150 mm (any diameter) or with a diameter ≤ 10 mm and a spacing ≥ 100 mm, then a factor f_{re} = 1 may be applied.


Shear loading

The design shear resistance is the lower value of

Steel resistance: V_{Rd.s}

. Concrete pryout resistance: $V_{Rd,cp} = k \cdot \text{lower value of } N_{Rd,p} \text{ and } N_{Rd,c}$

- Concrete edge resistance: $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_b \cdot f_b \cdot f_4 \cdot f_{hef} \cdot f_c$

Basic design shear resistance

Design steel resistance V_{Rd,s}

			Data according ETA-11/0493 and ETA-12/0084, issue 2013-06-20								6-20
Ancho	or size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	
$V_{Rd,s}$	BSt 500 S	[kN]	9,3	14,7	20,7	28,0	36,7	57,3	90,0	112,7	147,3

Design concrete pryout resistance $V_{Rd,cp}$ = lower value^{a)} of $k \cdot N_{Rd,p}$ and $k \cdot N_{Rd,c}$

k = 2

a) N_{Rd,p}: Design combined pull-out and concrete cone resistance

N_{Rd.c}: Design concrete cone resistance

Design concrete edge resistance $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_b \cdot f_h \cdot f_4 \cdot f_{hef} \cdot f_c$

	Data according ETA-11/0493 and ETA-12/0084, issue 2013-06-20									
Anchor size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Non-cracked concrete										
V ⁰ _{Rd,c}	[kN]	5,9	8,6	11,6	15,0	18,7	27,0	39,2	47,3	59,0
Cracked concrete										
V ⁰ _{Rd,c}	[kN]	-	6,1	8,2	10,6	13,2	19,2	27,7	33,5	41,8

Influencing factors

Influence of concrete strength

	Concrete strength designation (ENV 206) for = (f_1,, /25N/mm²\) 1/2 a)		C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
f _B =	$(f_{ck,cube}/25N/mm^2)^{1/2}$ a)	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = concrete compressive strength, measured on cubes with 150 mm side length

Influence of angle between load applied and the direction perpendicular to the free edge

Angle ß	0°	10°	20°	30°	40°	50°	60°	70°	80°	≥ 90°
$f_{\beta} = \sqrt{\frac{1}{(\cos \alpha_{\nu})^2 + \left(\frac{\sin \alpha_{\nu}}{2,5}\right)^2}}$	1	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

Influence of base material thickness

h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	≥ 1,5
$f_h = \{h/(1,5 \cdot c)\}^{1/2} \le 1$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

4 4

Influence of anchor spacing and edge distance ^{a)} for concrete edge resistance: $f_4 = (c/h_{ef})^{1,5} \cdot (1 + s / [3 \cdot c]) \cdot 0,5$

	Single						Grou	up of t	wo an	chors	s/h _{ef}					
c/h _{ef}	anchor	0,75	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50	8,25	9,00	9,75	10, 50	11, 25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10, 02	10, 31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10, 26	10, 55	10, 85

a) The anchor spacing and the edge distance shall not be smaller than the minimum anchor spacing s_{min} and the minimum edge distance c_{min} .

Influence of embedment depth

	aro pari								
h _{ef} /d	4	4,5	5	6	7	8	9	10	11
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	0,51	0,63	0,75	1,01	1,31	1,64	2,00	2,39	2,81
h _{ef} /d	12	13	14	15	16	17	18	19	20
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	3,25	3,72	4,21	4,73	5,27	5,84	6,42	7,04	7,67

Influence of edge distance a)

c/d	4	6	8	10	15	20	30	40
$f_c = (d / c)^{0.19}$	0,77	0,71	0,67	0,65	0,60	0,57	0,52	0,50

a) The edge distance shall not be smaller than the minimum edge distance c_{min}.

Combined tension and shear loading

For combined tension and shear loading see section "Anchor Design".

Seismic design C1

Basic loading data for concrete C20/25 - C50/60

All data in this section applies to:

Seismic design according to TR045

The following technical data are based on: ETA-11/0493 and ETA-12/0084, issue 2013-06-20

Anchorage depth range

Anchor size	Ф8	Ф10	Ф12	Ф14	Ф16	Ф20	Ф25	Ф28	Ф32		
Effective anchorage	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
depth range	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640

Tension resistance in case of seismic performance category C1

Anchor size			Ф8	Ф10	Ф12	Ф14	Ф16	Ф20	Ф25	Ф28	Ф32
Characteristic tension r	esistance	e to steel	failure								
Rebar B500B Acc. to DIN 488:2009-08	N _{Rk,s,seis}	[kN]	-	43	62	85	111	173	270	339	442
Partial safety factor Acc. to DIN 488:2009-08	γMs,seis	[-]		ż.	á):		1,4			3/-	
Characteristic bond res	istance i	n cracked	concr	ete C20	25 to C	50/60					
Temp. range I: 40°C/24°C	$ au_{Rk,seis}$	[N/mm²]	-	4,4				6,1			
Temp. range II: 80°C/50°C	$\tau_{Rk,seis}$	[N/mm²]	-	3,5				4,8			
Temp. range III: 120°C/72°C	$\tau_{\text{Rk,seis}}$	[N/mm²]	-	3				4,4			
Partial safety factor	γMp,seis	[-]					1,5				
Concrete cone resistan	ce and sp	olitting res	sistanc	е							
Partial safety factor YMC,s	seis = YMsp.se	eis [-]					1,5				

Displacement under tension load in case of seismic performance category C1 1)

Anchor size	Anchor size				Ф12	Ф14	Ф16	Ф20	Ф25	Ф28	Ф32
Displacement 1)	$\delta_{N,seis}$	[mm]	-	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3

¹⁾ Maximum displacement during cycling (seismic event).

Shear resistance in case of seismic performance category C1

Anchor size	nchor size				Ф12	Φ14	Ф16	Ф20	Ф25	Ф28	Ф32	
Characteristic shear resist	ance to	steel fa	ilure									
Rebar B500B Acc. to DIN 488:2009-08	Rk,s,seis	[kN]	-	15	22	29	39	60	95	118	155	
Partial safety factor Acc. to DIN 488:2009-08	Ms,seis	[-]					1,5					
Concrete pryout resistance	e and co	ncrete	edge re	sistanc	е							
Partial safety factor γ _{Mcp,seis}	= γMc,seis	[-]	1,5									

Displacement under shear load in case of seismic performance category C1 1)

Anchor size	Ф8	Ф10	Ф12	Ф14	Ф16	Ф20	Ф25	Ф28	Ф32	
Displacement ¹⁾	$\delta_{V,seis}$ [mm]	-	3,5	3,8	4,1	4,4	5,0	5,8	6,2	6,8

¹⁾ Maximum displacement during cycling (seismic event).

For seismic resistent fastening applications please use the anchor design software PROFIS Anchor.